Title: | Zero Defect Manufacturing for Thermo-dynamical Processes |
---|---|
Abstract: | The main objective of this research project is to develop a zero-defect manufacturing method for thermo-dynamical processes. The standard approach for such processes is to use experiments supported by simulation to find a suitable “recipe” and require in some cases comparably high safety margins to account for the remaining uncertainty. In the project sensors and data-driven models are developed, which allow an improved process control and reducing scrap material. Applications in the aerospace industry (composite parts), automotive industry (decorative parts) and extractive industry (aluminium production) are considered as case studies for the development. In these fields, process times can be shortened by 10-20% and scrap material can be reduced. |
Consortium Leader: | Profactor GmbH |
Duration: | 01.05.2021 to 30.04.2024 |
Program: | Produktion der Zukunft (FFG) |
KombiPhoton
Title: | KombiPhoton |
---|---|
Abstract: | The main objective of the KombiPhoton project is to research and develop a fast, non-contact, inline-capable and therefore non-destructive testing system. In the future, this should enable 100% testing of highly integral, complex-formed lightweight components made of thermoplastic fiber composites, which offer significant advantages in terms of material consumption, design freedom and recyclability. The innovations planned for this purpose are, on the one hand, a thermography system with the ability to analyze complexly contoured surfaces and, on the other hand, a miniaturized laser-ultrasound system to examine difficult-to-access, critical inner areas. Combined data analysis and imaging will additionally enable and improve the defect detection limit and the identification of indications. The planned inspection system shall be suitable for and tested on a relevant and challenging application from the aerospace industry. • Development of a 3D IRT measurement system and reconstruction method for complex shaped geometries • Development of a miniaturized scanning laser ultrasound sensor • Multimodal tomography by image registration of LUS and IRT reconstruction data • Multiscale inspection for evaluation of unclear IRT indications by a local LUS measurement (region-of-interest technique) • Multiphysical identification of a defect by thermal (IRT) and elastic waves (LUS) fusion of reconstruction data • Reduction of measurement costs by using new LUS detectors |
Consortium Leader: | RECENDT GmbH |
Project Partners: | FACC Operations GmbH, FH OÖ Forschungs & Entwicklungs GmbH |
Duration: | 01.05.2021 to 30.04.2024 |
Program: | FFG-PdZ / RTI-Initiative Production of the Future |
Partner:
K-PROJECT PHOTONIC SENSING FOR SMARTER PROCESSES
Title: | K-PROJECT PHOTONIC SENSING FOR SMARTER PROCESSES |
---|---|
Abstract: | The aim of the K project PSSP is to generate process knowledge with photonic methods which did not exist in this way before. The efficiency of production processes shall be significantly improved with these methods. Through specific research and development photonic methods can be applied before, but also directly in the production line. With the gained knowledge the process parameters, material and resources can be optimized. |
Consortium Leader: | RECENDT GmbH |
Duration: | September 2018 to September 2022 (4 years) |
Program: | COMET (administered by FFG) |
Website: | PSSP |
SpaceNDT
Title: | SpaceNDT |
---|---|
Abstract: | In the course of SpaceNDT we combine advanced non-destructive testing (NDT) technologies, e.g. Microcomputed tomography (XCT), Phase-contrast X-ray imaging (PCI), and Active Thermography (IRT) to investigate fatigue behaviour during thermo-mechanical loading of advanced materials used in space applications. Main goals are the establishment of defect catalogues for additively manufactured (AM), polymer matrix composites (PMC), and multi-material parts and the prediction of the influence of defects on fatigue life by means of FEA simulation. One of the main challenges to accelerate the acceptance and use of advanced materials (e.g. AM parts) in the ESA is to establish a broadly accepted materials and process quality system, including adequate NDT procedures. In SpaceNDT we employ a multi-modal and multi-scale approach to overcome disadvantages of standard methods in the detection of microcracks, pores, delamination, debonding, and fracture propagation in AM, PMC, and multi-material aerospace components. Ultimately, this project pursues efforts (spaceXCT, project: 854042) to establish NDT based “Best Practise Analysis Guidelines” to strengthen Austria´s role as a competent partner in the space sector in relation to advanced manufacturing and NDT. |
Consortium Leader: | FH OÖ Forschungs & Entwicklungs GmbH |
Duration: | June 2018 to May 2021 |
Program: | ASAP 14 |
NDTonAIR
Title: | NDTonAIR |
---|---|
Abstract: | The “NDTonAIR” consortium involves Universities, Research Organisations and major European companies working on new Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) techniques for aerospace, of which both are key technologies. The goal is to train a new generation of scientists and engineers with a wide background of theoretical and experimental skills, capable of developing their research and entrepreneurial activities both in academy and industry and playing an active role in promoting the importance of quality inspection and structural monitoring in aerospace components. |
Consortium Leader: | University of Perugia (IT) – Coordinator |
Duration: | 2018 - 2020 |
Program: | H2020-MSCA-ITN-2016- GRANT 722134 |
Website: | NDTonAIR |
Multimodal and in-situ characterization of inhomogenous materials
Title: | Multimodal and in-situ characterization of inhomogenous materials |
---|---|
Abstract: | Multimodal and non-destructive testing (NDT) methods are essential in order to characterize materials during their processing, e.g. during thermo-mechanical treatments, and to enable in-situ monitoring of the production process. In this project different NDT methods will be realized in a multimodal test rig. This enables the comparability of different NDT methods. In addition, a new high-resolution X-ray computed tomography system with in-situ stages will be acquired and used for the characterization and validation of NDT methods. Beneath experimental validations, resolution limits of the different NDT methods will be compared to theoretical limits. The experimental and theoretical approach will help to identify the best NDT methods for characterizing certain processes and to locate critical defects within the inspected materials. The aim of this project is to characterize inhomogeneous materials by a multimodal (simultaneous use of different NDT methods) and in-situ (during a running process within the material). Especially the “microscopic” characterization of inhomogenous materals during in-situ monitoring is of importance, such as microstructural changes in metals, changes of inner stresses in plastics or the quality of adhesion of joints or glued surfaces. The approaches within this project are beyond state-of-the-art, since common used NDT-methods are usually targeting only “macroscopic” properties such as wall thickness or defects in final parts (e.g. cracks, pores or shrinkage cavity). The multimodal aspect covers more material properties at once. The comparability between different NDT methods will be used to critical discuss advantages and disadvantages for certain inspection tasks. The project should strengthen the growth and claim the top position in terms of technology in the fields of material industry (metals, plastics, sandwich materials) as well as the automotive and aeronautic industry in terms of a better product quality and production efficiency. Further areas such as food industry and medical technology will be also targeted. |
Consortium Leader: | FH OÖ Forschungs & Entwicklungs GmbH & RECENDT GmbH |
Duration: | January 2016 to January 2021 (5 years) |
Program: | IWB2020 |
Website: | IWB2020 |
Effect of Defect
Title: | 3D thermographische Rekonstruktion von schadhaften Luftfahrtstrukturen für die mechanische Analyse |
---|---|
Abstract: | Das Ziel dieses Forschungsprojektes ist Entwicklung von thermographischen Methoden zur 3D Rekonstruktion von Fehlstellen in Luftfahrtstrukturen. Durch die Verfügbarkeit einer quantitativen und zerstörungsfreien Prüfmethode kann eine Schnittstelle zur mechanischen Analyse und Konstruktion geschaffen werden. Diese interdisziplinäre Zusammenarbeit soll eine umfassende Bewertung der Fehlstelle ermöglichen („Effect of Defect“). |
Consortium Leader: | FHOÖ Forschungs & Entwicklungs GmbH |
Duration: | September 2014 to August 2017 (3 years) |
Program: | FFG - TAKE OFF Ausschreibung 2013 |
Partner:
ANDISIA
Title: | Automated Non-Destructive Inspection and Structural Integrity Assessment of Hybrid Structural Composites |
---|---|
Abstract: | Das Ziel des Forschungsprojektes ist es, neuartige 3D-Flecht-Wickel-Technologie Bauteile mit Aktiver Thermographie automatisiert und zerstörungsfrei zu prüfen und die festgestellten Defekte in einem mechanischen Simulationsmodell zu integrieren. Daraus soll erstmals die Ermüdungsfestigkeit und Lebensdauer von geflochtenen und gewickelten Leichtbaustrukturen in Abhängigkeit der auftretenden Defekte vorhergesagt werden können. |
Consortium Leader: | FHOÖ Forschungs & Entwicklungs GmbH |
Duration: | April 2015 to March 2017 (2 years) |
Program: | FFG - Produktionsstandort OÖ 2050: Industrie 4.0 |
Partner:
Quality Skill
Title: | Entwicklung eines “inspection skills” für Roboter mit Anwendung in der Qualitätssicherung von Composite-Bauteilen |
---|---|
Abstract: | Ziel des Projektes ist die Entwicklung eines allgemein gültigen „inspection skills“ für Roboter oder mehrachsige Handlingsysteme. Damit werden Prüfaufgaben in der Produktion flexibel und automatisch realisiert, ohne dass für unterschiedliche Bauteile oder Prüfverfahren eine Neuprogrammierung notwendig ist. Der im Projekt untersuchte Einsatzbereich ist die Prüfung von Composite-Bauteilen mit Ultraschall, visueller Inspektion oder Thermographie. |
Consortium Leader: | Profactor GmbH |
Duration: | March 2015 to February 2017 |
Program: | FFG – Produktion der Zukunft |
Partner:
Energie aus Abwärme
Title: | Energie aus Abwärme - „Energy Harvesting“ mit Thermoelektrizität |
---|---|
Abstract: | Ein erheblicher Teil der von uns genutzten Energie geht in Form von Wärme verloren – sei es in Autos, Computern oder Kraftwerken. Thermoelektrische Materialien können diese Verlustwärme in Strom umwandeln und dadurch wieder nutzbare Energie erzeugen. Die Thermoelektrizität ist ein rasch wachsender Grundlagenforschungsbereich mit einem großen Potential für Anwendungen in der Medizintechnik, in der Automobilindustrie, in Kraftwerken und Índustrieprozessen, in der Raumfahrt sowie im privaten Bereich. Im beantragten Forschungsvorhaben sollen in enger Kooperation mit der TU Wien – Institut für Festkörperphysik sowie der Fa. Peltron GmbH als Hersteller von TEG-Modulen Prüfverfahren zur Charakterisierung thermoelektrischer Grundmaterialien sowie die zerstörungsfreie Detektion von Ausfällen und deren Ursachen an TEG-Modulen entwickelt werden. Eine im Haus befindliche Solarthermie Anlage soll mit TEGs ausgerüstet werden, um im Feldversuch Erkenntnisse über die Langzeitstabilität von TEG-Modulen bei hoher thermischer Belastung zu erhalten. Diese Basisfinanzierung soll es der Reserach Group of Thermography and NDT ermöglichen ein völlig neues Forschungsfeld der zerstörungsfreien Prüfung von elektrischen Bauteilen aufzubauen, welches es in Zukunft ermöglichen soll größere Projekte, wie Ressel-Zentrum, EU-Projekte durchzuführen. Damit erschließen sich Betätigungsfelder der FH-Forschung von grundlagenorientierten bis hin zu anwendungsorientierten Aktivitäten. |
Consortium Leader: | FHOÖ Forschungs & Entwicklungs GmbH |
Duration: | November 2016 to October 2018 (2 years) |
Program: | Basisfinanzierung FH OÖ |